AS BRIDGING WORK

- 1) Complete all questions, remember to show all working.
- 2) Using the markscheme and a green pen, self mark and correct your work.
- 3) Write 3 targets which calculations will you need to practice?

PART 1: MEASURING AMOUNT OF SUBSTANCE

CONCENTRATION	ΔΤΟΜ	ION	MOLECIILE
CONCENTRATION	ATON	ION	IVIOLECULE

MEASUREMENTS IN CHEMISTRY

Mass

Convert the following into grams:

- a) 0.25 kg
- b) 15 kg
- c) 100 tonnes
- d) 2 tonnes

Volume

Convert the following into dm³:

- a) 100 cm³
- b) 25 cm³
- c) 50 m³
- d) 50000 cm³

Tip – always use standard form for very large and very small numbers!

What is a mole?

Atoms and molecules are very small – far too small to count individually!

It is important to know how much of something we have, but we count particles in MOLES because you get simpler numbers

1 mole = 6.02×10^{23} particles (6.02 x 10^{23} is known as Avogadro's number)

a) If you have 2.5 x 10²¹ atoms of magnesium, how many moles do you have?

b) If you have 0.25 moles of carbon dioxide, how many molecules do you have?

How can you work out how many moles you have?

a) From a measurement of MASS:

You can find the number of moles of a substance if you are given its **mass** and you know its **molar mass**:

Mass MUST be measured in grams!

Molar mass has units of gmol⁻¹

1. Calculate the number of	2. Calculate the mass of:	3. Calculate the molar mass of
moles present in:		the following substances:
a) 2.3 g of Na	a) 0.05 moles of Cl ₂	a) 0.015 moles, 0.42 g
b) 2.5 g of O ₂	b) 0.125 moles of KBr	b) 0.0125 moles, 0.50 g
c) 240 kg of CO ₂	c) 0.075 moles of Ca(OH) ₂	c) 0.55 moles, 88 g
d) 12.5 g of Al(OH)₃	d) 250 moles of Fe_2O_3	d) 2.25 moles, 63 g
e) 5.2 g of PbO ₂	e) 0.02 moles of Al ₂ (SO ₄) ₃	e) 0.00125 moles, 0.312 g

b) From a measurement of AQUEOUS VOLUME:

You can find the number of moles of a substance dissolved in water (aqueous) if you are given the **volume** of solution and you know its **molar concentration**:

Aqueous volume MUST be measured in dm³!

concentration has units of moldm⁻³

If you know the molar mass of the substance, you can convert the molar concentration into a mass concentration:

Molar concentration (moldm ⁻³)	х	mr	=	mass concentration (gdm ⁻³)
--	---	----	---	---

1. Calculate the number of	2. Calculate the molar	3. Calculate the molar
moles of substance present in	concentration and the mass	concentration and the mass
each of the following	concentration of the following	concentration of the following
solutions:	solutions:	solutions:
a) 25 cm ³ of 0.1 moldm ⁻³ HCl	a) 0.05 moles of HCl in 20 cm ³	a) 35 g of NaCl in 100 cm ³
b) 40 cm ³ of 0.2 moldm ⁻³	b) 0.01 moles of NaOH in 25	b) 20 g of CuSO ₄ in 200 cm ³
HNO₃	cm ³	
c) 10 cm ³ of 1.5 moldm ⁻³ NaCl	c) 0.002 moles of H ₂ SO ₄ in	c) 5 g of HCl in 50 cm ³
	16.5 cm ³	
d) 5 cm ³ of 0.5 moldm ⁻³	d) 0.02 moles of CuSO ₄ in 200	d) 8 g of NaOH in 250 cm ³
AgNO ₃	cm ³	
e) 50 cm ³ of 0.1 moldm ⁻³	e) 0.1 moles of NH ₃ in 50 cm ³	e) 2.5 g of NH ₃ in 50 cm ³
H ₂ SO ₄		

c) From a measurement of GASEOUS VOLUME:

You can find the number of moles of a gas if you are given the **volume** of the gas and its **pressure** (in kPa) and **absolute temperature (in K)**:

number of moles = <u>pressure x volume</u> = PV/RT

R x temperature

Volume of gas must be in m³

Pressure must be in Pa

Temperature must be in K

R is the molar gas constant (8.31 Jmol⁻¹K⁻¹)

1. Calculate the number of	2. Calculate the volume of gas	3. Calculate the mass of the
moles present in:	occupied by:	following gas samples:
a) 48 dm ³ of O ₂ at 298 K and	a) 0.05 moles of Cl ₂ at 298 K	a) 48 dm ³ of O ₂ at 298 K and
100 kPa	and 100 kPa	100 kPa
b) 1.2 dm ³ of CO ₂ at 298 K and	b) 0.25 moles of CO_2 at 298 K	b) 1.2 dm ³ of CO ₂ at 298 K and
100 kPa	and 100 kPa	100 kPa
c) 200 cm 3 of N $_2$ at 273 K and	c) 28 g of N $_2$ at 273 K and 250	c) 200 cm 3 of N $_2$ at 273 K and
250 kPa	kPa	250 kPa
d) 100 dm 3 of Cl $_2$ at 30 °C at	d) 3.2 g of O_2 at 30 °C at 100	d) 100 dm 3 of Cl $_2$ at 30 °C at
100 kPa	kPa	100 kPa
e) 60 cm ³ of NO ₂ at 25 $^{\circ}$ C and	e) 20 g of NO₂ at 25 °C and	e) 60 cm ³ of NO ₂ at 25 $^{\circ}$ C and
100 kPa	100 kPa	100 kPa

PART 2: USING CHEMICAL EQUATIONS

MASS	AQUEOUS VOLUME	` MOLAR MASS
$6CO_2 + 6H_2O$	sunlight	$C_6H_{12}O_6 + 6O_2$
	nutrients	Organic compounds
GASEOUS VOLUME	MOLES	CONCENTRATION

REVISION FROM TASK 1

How many moles?

1) Erder weighs a sample of CaCO₃ and records a mass of 5.0 g. How many moles of calcium carbonate are present?

2) Aishah measures out 50 cm³ of 0.1 moldm⁻³ hydrochloric acid. How many moles of hydrochloric acid are present?

3) Humaira collects 48 cm³ of carbon dioxide in a gas syringe at 298 K and 100 kPa. How many moles of carbon dioxide are present?

Using Chemical Equations

Chemical Equations show the ratio in which different species react in a chemical equation.

This equation shows that **6** moles carbon dioxide of react with **6** mole of water to make **1** mole of glucose and **6** moles of oxygen.

6: 6: 1: 6

- a) How many moles of water are needed to react with 0.03 moles of carbon dioxide?
- b) How many moles of glucose can you make from 0.03 moles of carbon dioxide?
- c) How many moles of oxygen can you make from 0.03 moles of carbon dioxide?

Equation 1: $Mg + 2 HCI \rightarrow MgCl_2 + H_2$

- a) How many moles of magnesium would be needed to react with 0.01 moles of hydrochloric acid?
- b) How many moles of hydrogen could be produced from 0.01 moles of hydrochloric acid?

Equation 2: $2 H_2S + 3 O_2 \rightarrow 2 SO_2 + 2 H_2O$

- a) How many moles of oxygen are needed to react with 0.5 moles of hydrogen sulphide?
- b) How many moles of sulphur dioxide can be made from 0.5 moles of hydrogen sulphide?

Equation 3: $4 K + O_2 \rightarrow 2 K_2 O$

- a) How many moles of oxygen are needed to react with 0.05 moles of potassium?
- b) How many moles of potassium oxide can be made from 0.05 moles of potassium?

Calculating Reacting Quantities from Chemical Equations

You perform these calculations in three steps:

- calculate the number of moles of one of the substances (you will either be given the mass, or the aqueous volume and the concentration, or the gaseous volume)
- use the equation to work out the number of moles of the other substance
- use one of the mole relationships to work out the quantity you need
- 1) What volume (in dm³) of hydrogen is produced at 298 K and 100 kPa when 194 g of magnesium is reacted with hydrochloric acid?

$$Mg + 2 HCI \rightarrow MgCl_2 + H_2$$
(3)

What volume (in cm³) of 0.5 moldm⁻³ hydrochloric acid is required to react completely with
1.94 g of magnesium?

$$Mg + 2 HCI \rightarrow MgCl_2 + H_2$$
(3)

3) What volume (in dm³) of oxygen at 298 K and 100 kPa is needed to react with 8.5 g of hydrogen sulphide (H₂S)?

$$2 H_2 S + 3 O_2 \rightarrow 2 SO_2 + 2 H_2 O \tag{3}$$

4) What mass of potassium oxide is formed when 7.8 g of potassium is burned in excess oxygen?

$$4 K + O_2 \rightarrow 2 K_2 O \tag{3}$$

5) What volume of oxygen (in dm³) at 298 K and 100 kPa is required to oxidise 10 g of ammonia to NO?

$$4 \text{ NH}_3 + 5 \text{ O}_2 \rightarrow 4 \text{ NO} + 6 \text{ H}_2 \text{O}$$
 (3)

6) What mass of aluminium oxide is produced when 135 g of aluminium is burned in oxygen?

$$2 \text{ Al} + 3 \text{ O}_2 \rightarrow \text{Al}_2 \text{ O}_3 \tag{3}$$

7) What mass of iodine is produced when 2.4 dm³ of chlorine gas reacts with excess potassium iodide at 298 K and 100 kPa?

$$Cl_2 + 2 KI \rightarrow 2 KCI + l_2$$
 (3)

8) What volume (in dm³) of hydrogen is needed to react with 32 g of copper oxide at 200 °C and 100 kPa?

$$CuO + H_2 \rightarrow Cu + H_2O \tag{3}$$

9) What volume of oxygen is formed at 398 K and 100 kPa when 735 g of potassium chlorate decomposes?

$$2 \text{ KClO}_3 \rightarrow 2 \text{ KCl} + 3 \text{ O}_2 \tag{3}$$

10) What volume of hydrogen is produced when 195 g of potassium is added to water at 298 K and 100 kPa?

$$2 \text{ K} + 2 \text{ H}_2\text{O} \rightarrow 2 \text{ KOH} + \text{H}_2 \tag{3}$$

11) What mass of calcium carbonate is required to produce 1.2 dm³ of carbon dioxide at 398 K and 100 kPa?

$$CaCO_3 \rightarrow CaO + CO_2$$
 (3)

12) What mass of magnesium oxide is formed when magnesium reacts with 6 dm³ of oxygen at 298 K and 100 kPa?

$$2 \text{ Mg} + \text{O}_2 \rightarrow 2 \text{ MgO} \tag{3}$$

13) What volume of carbon dioxide (in dm^3) is produced when 5.6 g of butene (C₄H₈) is burnt at 298 K and 100 kPa?

$$C_4H_8 + 6O_2 \rightarrow 4CO_2 + 4H_2O$$
 (3)

14) The pollutant sulphur dioxide can be removed from the air by reaction with calcium carbonate in the presence of oxygen. What mass of calcium carbonate is needed to remove 480 dm³ of sulphur dioxide at 298 K and 100 kPa?

$$2 \operatorname{CaCO}_3 + 2 \operatorname{SO}_2 + \operatorname{O}_2 \rightarrow 2 \operatorname{CaSO}_4 + 2 \operatorname{CO}_2 \tag{3}$$

15) 25 cm³ of a solution of sodium hydroxide reacts with 15 cm³ of 0.1 mol/dm³ HCl. What is the molar concentration of the sodium hydroxide solution?

$$HCI + NaOH \rightarrow NaCI + H_2O$$
(3)

FIVE AS-LEVEL QUESTIONS

- 1. Which one of the following contains the smallest number of moles of carbon dioxide gas?
 - **A** 2.65 g
 - **B** 0.0150 m³ at 1000 K and 33.0 kPa
 - **C** 1.50 dm³ at 327 °C and 200 kPa
 - D 1500 cm³ at 300 K and 100 kPa

(Total 1 mark)

- 2. Which one of the following samples of gas, when sealed into a vessel of volume 0.10 m³, is at the highest pressure?
 - A 1.6 g of helium (He) at 100 K
 - B 1.6 g of methane (CH₄) at 100 K
 - **C** 1.6 g of oxygen (O₂) at 600 K
 - **D** 1.6 g of sulphur dioxide (SO₂) at 1200 K

(Total 1 mark)

- 3. Which one of the following samples of gas occupies the largest volume?
 - A 1.0 g of ozone (O₃) at I00 kPa and 300 K
 - **B** 1.0 g of oxygen (O₂) at 100 kPa and 300 K
 - C 1.0 g of water vapour (H₂O) at 250 kPa and 450 K
 - **D** 1.0 g of methane (CH₄) at 333 kPa and 500 K

(Total 1 mark)

4. Which one of the following contains the greatest number of moles of methanol?

(The Avogadro number (*L*) is 6.02×10^{23} , the relative molecular mass (*M*_r) of methanol is 32.)

- **A** 6.6×10^{22} molecules of methanol
- **B** 3.3 g of methanol
- **C** $2.5 \times 10^{-3} \text{ m}^3$ of methanol vapour at 300 K and 100 kPa
- **D** 70 cm³ of 1.5 M aqueous methanol

(Total 1 mark)

- 5. What is the volume occupied by 10.8 g of the freon CCl_2F_2 at 100 kPa and 273 K?
 - **A** 2.02 dm³
 - **B** 2.05 dm³
 - **C** 2.02 cm³
 - **D** 2.05 cm³

(Total 1 mark)

ANSWERS TO TRANSITION EXERCISES

MEASUREMENTS IN CHEMISTRY

Mass

- e) 0.25 x 1000 = 250 g
- f) 15 x 1000 = 15000 g
- g) $100 \times 10^6 = 1 \times 10^8 \text{ g}$
- h) 2 x 10⁶ g

Volume

- e) $100/100 = 0.1 \text{ dm}^3$
- f) $25/1000 = 0.025 \text{ dm}^3$
- g) 50 x 1000 = 50000 dm³
- h) 50000/1000 = 50 dm³

What is a mole?

- c) $(2.5 \times 10^{21})/(6.02 \times 10^{23}) = 4.15 \times 10^{-3}$
- d) $0.25 \times 6.02 \times 10^{23} = 1.51 \times 10^{23}$

How can you work out how many moles you have?

d) From a measurement of MASS:

1.	a) 0.10	b) 0.078	c) 5500	d) 0.16	e) 0.022
2.	a) 3.6 g	b) 14.9 g	c) 5.6 g	d) 39.9 kg	e) 6.8 g
3.	a) 28	b) 40	c) 160	d) 28	e) 249.6

e) From a measurement of AQUEOUS VOLUME:

1.	a) 2.5 x 10 ⁻³	b) 8 x 10 ⁻³	c) 0.015	d) 2.5 x 10 ⁻³	e) 5 x 10 ⁻³
2.	a) 2.5 moldm ⁻³ , 91.	3 gdm⁻³	b) 0.4 moldm ⁻³ ,	16 gdm ⁻³	
	c) 0.121 moldm ⁻³ , 1	1.9 gdm ⁻³	d) 0.1 moldm ⁻³ ,	16.0 gdm ⁻³	
	e) 2 moldm ⁻³ , 34 gc	lm⁻³			
3.	a) 350 gdm ⁻³ , 5.98 i	moldm ⁻³	b) 100 gdm ⁻³ , 0.	.627 moldm ⁻³	
	c) 100 gdm ⁻³ , 2.74 ı	moldm ⁻³ d) 32 g	dm ⁻³ , 0.8 moldm	-3	
	e) 50 gdm ⁻³ , 1.47 m	oldm ⁻³			

f) From a measurement of GASEOUS VOLUME:

1.	a) 2	b) 0.05	c) 0.022	d) 4.0	e) 2.5
2.	a) 1.2 dm³	b) 6 dm³	c) 9.1 dm³	d) 2.5 dm³	e) 10.4 dm ³
3.	a) 64 g	b) 2.2 g	c) 0.62 g	d) 282 g	e) 0.115 g

TRANSITION COURSE – END OF PART 1!

How many moles?

- 1) 0.05
- 2) 5 x 10⁻³
- 3) 2 x 10⁻³

Using Chemical Equations

Equation 0:	a) 0.03	b) 0.005	c) 0.03
Equation 1:	a) 0.005	b) 0.005	
Equation 2:	a) 0.75	b) 0.5	
Equation 3:	a) 0.0125	b) 0.025	

Calculating Reacting Quantities from Chemical Equations

1.	moles (Mg) = 194/24.3 = 8.0 moles (H ₂) = 8.0 x 1 = 8.0 volume (H ₂) = 8.0 x 8.31 x 298/100000 x 1000 = 200	Answer: 200 dm ³
2.	moles (Mg) = 1.94/24.3 = 0.08 moles (HCl) = 0.08 x 2 = 0.16 volume (HCl) = 0.16/0.5 x 1000 = 320	Answer: 320 cm ³
3.	moles (H ₂ S) = 8.5/34 = 0.25 moles (O ₂) = 0.25 x 1.5 = 0.375 mass (O ₂) = 0.375 x 8.31 x 298/100000 x 1000 = 9.3	Answer: 9.3 dm ³
4.	moles (K) = $7.8/39.1 = 0.2$ moles (K ₂ O) = $0.2 / 2 = 0.1$ mass (K ₂ O) = $0.1 \times 94 = 9.4$	Answer: 9.4 g

5.	moles (NH₃) = 10/17 = 0.588	
	moles (O ₂) = 0.588 x 5/4 = 0.735	
	mass (H ₂) = 0.735 x 8.31 x 298/100000 x 1000 = 18.	2 Answer: 18 dm ³

- 6. moles (Al) = 135/27 = 5 moles (Al₂O₃) = 5/2 = 2.5 mass (Al₂O₃) = 2.5 x 102 = 255 g
 Answer: 255 g
- 7. moles (Cl₂) = 100000 x 0.0024/(8.31 x 298) = 0.097 moles (l₂) = 0.0197 x 1 = 0.097 mass (l₂) = 0.097 x 253.8 = 24.6 g
 Answer: 24.6 g
- 8. moles (CuO) = 32/79.6 = 0.402moles (H₂) = $0.4 \times 1 = 0.402$ volume (H₂) = $0.402 \times 8.31 \times 473/100000 \times 1000 = 15.8 \text{ dm}^3$ Answer: 15.8 dm³
- 9. moles $(KClO_3) = 735/122.6 = 6.00$ moles $(O_2) = 6.00 \times 1.5 = 8.99$ volume $(O_2) = 8.99 \times 8.31 \times 398/100000 \times 1000 = 297 \text{ dm}^3$ Answer: 297 dm³
- 10. moles (K) = 195/39.1 = 4.99moles (H₂) = 4.99 / 2 = 2.49volume (H₂) = $2.49 \times 8.31 \times 298/100000 \times 1000 = 61.8 \text{ dm}^3$ Answer: 61.8 dm^3
- 11. moles (CO₂) = 0.0012 x 100000/(8.31 x 398) = 0.036 moles (CaCO₃) = 0.036 x 1 = 0.036 mass (CaCO₃) = 0.036 x 100.1 = 3.6 g Answer: 3.6 g
- 12. moles (O₂) = 0.006 x 100000/(8.31 x 298) = 0.24 moles (MgO) = 0.24 x 2 = 0.48 mass (MgO) = 0.48 x 19.5 = 19.5 g Answer: 19.5 g
- 13. moles $(C_4H_8) = 5.6/56 = 0.1$ moles $(CO_2) = 0.1 \times 4 = 0.4$ volume $(CO_2) = 0.4 \times 8.31 \times 298/100000 \times 1000 = 9.9$ Answer: 9.9 dm³
- 14. moles (SO₂) = 0.480 x 100000/(298 x 8.31) = 19.4 moles (CaCO₃) = 19.4 x 1 = 19.4 mass (CaCO₃) = 19.4 x 100.1 = 1940 g Answer: 1940 g
- 15. moles (HCl) = (15/1000) x 0.1 = 0.0015 moles (NaOH) = 0.0015 x 1 = 0.0015 molar concentration (NaOH) = 0.0015 / (25/1000) = 0.06 mol/dm³

Answer: 0.06 mol/dm³

AS Questions:

Answers: B, A, D, A, A